
 Molecular Vision 2000;  6:252-60 <http://www.molvis.org/molvis/v6/a34>
Received 3 October 2000 | Accepted 5 December 2000 | Published 13 December 2000

Exposure to high levels of visible light induces apoptotic
cell death of photoreceptors [1-3]. Photons of the damaging
light are absorbed by the visual pigment rhodopsin [1,4] cre-
ating an intracellular death signal that leads to activation of
the transcription factor AP-1. AP-1 DNA binding activity in-
creases as soon as 15 min after the start of light exposure,
reaching a maximum at about 6 h after a 2 h illumination [5].
Activation of AP-1 is essential for light-induced photorecep-
tor apoptosis since transrepression of AP-1 by activated glu-
cocorticoid receptor protects photoreceptors from light dam-
age (A. Wenzel, personal communication). AP-1 is a complex
that consists either of heterodimers of members of the Fos (c-
Fos, FosB, Fra-1, Fra-2) and the Jun (c-Jun, JunB, JunD) fam-
ily of proteins or of homodimers of members of the Jun fam-
ily of proteins [6,7]. Light-induced complexes are mainly com-
posed of c-Fos, c-Jun and JunD proteins [8]. Whereas JunD is
not essential for light-induced photoreceptor apoptosis [9], the
lack of c-Fos completely protects the mouse retina against light
damage [10].

Considerable evidence suggests a role for altered gene
expression during apoptosis. Inhibition of both RNA and pro-
tein synthesis blocks the onset of apoptosis in a wide variety
of systems [11,12] suggesting that specific genes need to be
induced and controlled by transcription factors like AP-1. On
the other hand, several cell types can express the cell death
machinery constitutively at all times. Upon removal of sur-

vival signals that seem to suppress the intrinsic death program,
such cells die by apoptotic mechanisms without de novo gene
expression [13].

Execution of apoptosis frequently depends on the Bcl-2
family of proteins. Both death antagonists (e.g., Bcl-2, Bcl-
X

L
, Bcl-w, Bfl-1, Bag-1, Mcl-1, A1) and agonists (e.g., Bax,

Bak, Bcl-X
S
, Bad, Bid, Bik, Hrk) belong to the Bcl-2 family

of proteins. Most of these proteins contain a transmembrane
domain which localizes them predominantly to the outer mi-
tochondrial membrane [14] where they might be involved in
the regulation of the transmembrane potential controlling the
release of pro-apoptotic factors like cytochrome c into the
cytoplasm.

In the retina, several of these pro- and anti-apoptotic genes
are expressed [15,16] and may affect retinal degeneration.
Overexpression of Bcl-2 delayed photoreceptor apoptosis in
the retinal degeneration slow (rds) mouse [17] and in the ho-
mozygous Pdegtm1 mouse [18] but not in a mouse carrying a
dominant opsin mutation (K296E) [19,20]. Retinal degenera-
tion induced by another rhodopsin mutation (S334ter), how-
ever, was delayed by the ectopic expression of Bcl-2 [21], an
effect that was ameliorated by the coexpression of Bag with
the Bcl-2 transgene [22]. Mixed results were reported for res-
cue of retinal degeneration in the retinal degeneration (rd)
mouse: opsin driven overexpression of Bcl-2 did not affect
photoreceptor apoptosis in a transgenic animal, whereas Bcl-
2 delayed the degenerative process when delivered by aden-
ovirus mediated transfer in a gene therapy approach [23]. Fur-
thermore, Bcl-2 overexpression delayed apoptosis induced by
constant light [21] or short term exposure to high intensity
green light [20].
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In a variety of tissues, execution of apoptosis frequently
relies on the activation of cysteine proteases (caspases) [24,25].
In the retina, several different caspases, mostly including
Caspase-3, are activated during apoptosis induced by a vari-
ety of stimuli including ischemia, excitotoxicity, treatment with
antibodies to heat shock protein 27 [26], lead and calcium
overload [27], mutations in the opsin gene [28] or during the
degenerative process in the Royal College of Surgeon (RCS)
rat [29]. However, retinal degeneration involving oxidative
stress could not be prevented by inhibitors of caspase activity
[30] suggesting that both caspase-dependent and caspase-in-
dependent apoptosis can occur in the retina. Here, we tested
activation of several apoptosis-related genes during light-in-
duced degeneration of photoreceptors in wildtype mice. Be-
sides c-fos and c-jun, caspase-1 was the only apoptosis-re-
lated gene upregulated upon light exposure. Gene expression
was compared to c-fos-/- mice which are protected against light-
induced photoreceptor apoptosis. These mice lack functional
c-Fos and may therefore have an AP-1 composition different
from wildtype mice. This might affect expression of AP-1 tar-
get genes. Therefore, we tested whether any of the common
apoptotic genes would be differentially expressed in the pro-
tected knockout mice. We show that this was not the case.
Except for c-fos, all genes tested were similarly expressed in
both wildtype and c-fos-/- mice. This suggests that the protec-
tion of c-fos-/- mice against light-induced photoreceptor
apoptosis was not due to a generally altered gene expression.
Furthermore, our results also suggest that light-induced pho-
toreceptor apoptosis involves upregulation of caspase-1 but
not activation of other common pro- or anti-apoptotic genes
tested.

METHODS
Animals:  All experiments conformed to the ARVO statement
for care and use of animals in research and to the guidelines of
the Veterinary Authority of Zurich. Wildtype (129SV/Bl6(N2),
pigmented; BALB/c, albino) or c-fos-/- mice (genetic back-
ground: 129SV/Bl6(N2), pigmented) were raised in cyclic light
(12:12 h; 60 lux at cage level) for at least 10 days. The 129SV/
Bl6(N2) mice have a mixed 129SV and C57/Bl6 background.
They were bred on this background for more than 10 genera-
tions.

Light exposure and retinal morphology:  Six to 10 week
old mice were dark adapted overnight (16 h) and pupils of
pigmented mice were dilated under dim red light with 1%
Cyclogyl and 5% Phenylephrine 45 min prior to exposure (start
at 10 am) to diffuse, white fluorescent light (TLD36 W/965
tubes, Philips; ultraviolet-impermeable diffuser) in cages with
reflective interior. After light exposure, mice were either kept
in darkness until retinal morphology was analyzed or until
retinas were prepared for RNA isolation. For morphological
analysis of retinal tissue, enucleated eyes were fixed in 2.5%
glutaraldehyde and embedded in Epon 812. Sections were
analyzed from both the superior and the inferior central re-
gions of the retina. Shown in Figure 1 are only the inferior
central regions, the most affected area in our light damage
system.

RNA isolation, cDNA synthesis and PCR:  Retinas were
removed through a slit in the cornea and immediately frozen
in liquid nitrogen. Retinas were stored at -70 °C until RNA
preparation. Total retinal RNA was prepared using the RNeasy
RNA isolation kit (Qiagen, Hilden, Germany). Reverse tran-
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Figure 1. Photoreceptor apoptosis induced by high levels of white light.  Light microscopic analysis of sections of central inferior retinal
tissues of wildtype (129SV/Bl6) mice (A through C) and of c-fos-/- mice (D) before (A) and at 48 h after exposure to 13,000 lux (C, D) or to 60
lux (B) of white fluorescent light for 2 h. Scale bar: 25 µm. PE: pigment epithelium; ROS: rod outer segment; RIS: rod inner segment; ONL:
outer nuclear layer.
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scription was performed on 400 ng of total retinal RNA using
oligo(dT) and M-MLV reverse transcriptase (Promega, Madi-
son, USA). cDNAs corresponding to 10 ng of total RNA were
amplified with primers specific for β-actin (see below). Am-
plification products were quantified on a PhosphorImager
(Fuji, Tokyo, Japan) for standardization. Standardized cDNAs
corresponding to 10 to 20 ng of total RNA were amplified by
PCR using the following primer pairs and cycle numbers (lin-
ear range of amplification was determined for each amplified
fragment in pre-experiments, data not shown): β-actin: 24
cycles; up: 5'-CAA CGG CTC CGG CAT GTG C-3'; down:
5'-CTC TTG CTC TGG GCC TCG-3'. Caspase-3: 30 cycles;
up: 5'-AGT CAG TGG ACT CTG GGA TC-3'; down: 5'-GTA
CAG TTC TTT CGT GAG CA-3'. Bad: 32 cycles; up: 5'-AGA
GTA TGT TCC AGA TCC CAG-3'; down: 5'-GTC CTC GAA
AAG GGC TAA GC-3'. Bax: 29 cycles; up: 5'-GCT CTG AAC
AGA TCA TGA AG-3'; down: 5'-GAT GGT CAC TGT CTG
CCA TG-3'. Bcl-2: 30 cycles; up: 5'-TTG TGG CCT TCT TTG
AGT TCG-3'; down: 5'-ATT TCT ACT GCT TTA GTG AAC
C-3'. Bcl-X

L
: 30 cycles; up: 5'-GAC TTT CTC TCC TAC AAG

C-3'; down: 5'-CGA AAG AGT TCA TTC ACT AC-3'.
Caspase-1: 34 cycles; up: 5'-GAG AAG AGA GTG CTG AAT
CAG-3'; down: 5'-CAA GAC GTG TAC GAG TGG TTG-3'.

c-Jun: 28 cycles; up: 5'-GCA ATG GGC ACAT CAC CAC-3';
down: 5'-GAA GTT GCT GAG GTT GGC G-3'. c-Fos: 25
cycles; up: 5'-CAA CGC CGA CTA CGA GGC GTC AT-3';
down: 5'-GTG GAG ATG GCT GTC ACC G-3'.
Semiquantitative PCR amplification of a 189 bp fragment of
c-fos cDNA was done in reactions containing decreasing
amounts (5-fold dilutions per step) of a 219 bp long competi-
tor (mimic) DNA. Amplification was done during 30 cycles
using the primer pair described above. Downstream primers
in all amplification reactions were 32P-end labeled. Amplifi-
cation products were resolved on a 6% polyacrylamide gel
and stained with ethidium bromide. Products were quantified
on a PhosphorImager (Fuji).

RESULTS
Expression of c-fos and c-jun: Exposure to high levels of white
light induces apoptotic cell death of photoreceptors in wildtype
but not in c-fos knockout mice (Figure 1; [10]). Execution of
cell death depends on activation of AP-1 [5,8]. Main compo-
nents of activated AP-1 are c-Fos, c-Jun and JunD [5,8]. Reti-
nal expression of immediate early genes like c-fos can be regu-
lated by a variety of signals including stress [31] and light
[32,33]. Accordingly, levels of c-fos mRNA increased 3.5- to
4.5-fold at 15 min after dark-adapted mice were exposed to
normal roomlight (60 lux; Figure 2A, grey bars) or to damag-
ing light of 13,000 lux (Figure 2A, white bars). In mice ex-
posed to 60 lux, elevated c-fos levels persisted for at least 30
min after lights on, but declined to control levels after 2 h. In
contrast, retinal c-fos mRNA levels remained elevated through-
out the exposure time of two hours and at least until 2 addi-
tional hours after lights off. At 8 h after lights off, retinal c-fos
mRNA levels of mice exposed to 13,000 lux declined to lev-
els 2.5-fold above control. After 20 h in darkness, c-fos mRNA
levels returned to control levels.

Surprisingly, c-fos mRNA levels of mice not exposed to
light also increased transiently (Figure 2A, black bars). Al-
though these mice remained in darkness during the time when
experimental mice were exposed, they received low doses (ca.
10 lux) of red light (above 600 nm) during the dilation of their
pupils. To test, whether the increase of c-fos mRNA levels in
the dark control mice could have been due to handling, pupil
dilation and red light illumination, we measured c-fos mRNAs
by competitive RT-PCR (i) in retinas of eyes with non-dilated
pupils isolated from mice that were dark adapted in separate
cages for 16 h, (ii) in retinas of dark adapted mice that were
exposed for 30 min to red light (10 lux) and (iii) in retinas of
dark adapted mice that had dilated pupils and that were ex-
posed to 30 min of red light (10 lux). Relative c-fos expres-
sion in control animals was set as 1 (n=3). Exposure to red
light resulted in a 2.3-fold elevation of the RNA levels (n=3).
Pupil dilation prior to red light exposure further increased the
relative c-fos mRNA levels to a factor of 5.7 (n=3) as com-
pared to the controls.

c-jun mRNA levels were determined by exponential PCR.
In contrast to c-fos, c-jun RNA levels were not increased by
handling of the animals (data not shown) and only marginally
by exposure to room light (Figure 2B, grey bars). c-jun mRNA
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Figure 2. Retina levels of c-fos and c-jun mRNA.  Analysis of c-fos
and c-jun mRNA levels in retinas of 129SV/Bl6 mice by RT-PCR. A:
Bar diagram of relative levels of c-fos RNA as estimated by competi-
tive RT-PCR. B: Bar diagram of relative c-jun RNA levels as esti-
mated by exponential RT-PCR. Mice with dilated pupils were either
kept in darkness (black bars) or exposed to 60 lux (grey bars) or to
13,000 lux (white bars) of white light for 15 min (15'), 30 min (30')
or 120 min (120') or for 120 min with a subsequent recovery period
in darkness of 2 h (+2h), 8h (+8h) or 20 h (+20h) as indicated. Aver-
age values of two amplification reactions of RNA isolated from one
retina per timepoint and condition are shown. The ranges of the two
individual amplification values are shown whenever the range ex-
ceeded a value of 0.3. Second independent experiments with another
group of mice are shown in Figure 5.
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levels of dark-maintained animals were somewhat elevated
during the course of the experiment. The reason for this is not
clear but it might be that the control levels (D) were slightly

underestimated. Exposure to 13,000 lux resulted in a 3- to
4.5-fold increase of c-jun mRNA levels starting after 30 min
of illumination and persisting for more than 8 h post-illumi-
nation. Even at 20 h after illumination, c-jun mRNA levels
were elevated 3-fold (Figure 2B).

Expression of apoptosis-related genes:  Retinal mRNAs
of the two anti-apoptotic genes, bcl-2 (Figure 3A) and bcl-X

L

(Figure 3B), and of the three pro-apoptotic genes bax (Figure
3C), bad (Figure 3D) and caspase-3 (Figure 3E) were ex-
pressed at similar levels, independent of the light intensity
and duration of exposure. Similarly, RNA levels of dark-main-
tained animals measured at different timepoints throughout
the experiment were not different from control levels (not
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Figure 3. Relative levels of apoptosis-related mRNAs.  Data are relative levels of apoptosis-related mRNAs in retinas of 129SV/Bl6 mice as
determined by exponential RT-PCR (A through F; as indicated). Mice with dilated pupils were either kept in darkness (black bars) or exposed
to 60 lux (grey bars) or to 13,000 lux (white bars) of white light for 15 min (15'), 30 min (30') or 120 min (120') or for 120 min with a
subsequent recovery period in darkness of 2 h (+2h), 8h (+8h) or 20 h (+20h) as indicated. Amplification was done using the same RNA
preparations as in Figure 2. Amplifications were done once (A through D), twice (E) or 3 times (F). The ranges of the two individual amplifi-
cation values (E) and the standard deviation (F; bars), respectively, are shown. RNAs were isolated from one retina per timepoint and condi-
tion. A second independent experiment with another group of mice is shown in Figure 5.

Figure 4. Relative levels of caspase-1 mRNA.  Relative levels of
caspase-1 mRNA in retinas of BALB/c mice as determined by expo-
nential RT-PCR. Mice were either kept in darkness (D, black bar) or
exposed to 13,000 lux of white light for 15 min (15'), 30 min (30'),
60 min (60') or to 60 min’ with a subsequent recovery period in dark-
ness of 1 h (+1h), 2 h (+2h), 4 h (+4h), 6 h (+6h), 8 h (+8h), 10 h
(+10h), 12 h (+12h), 14 h (+14h) or 24 h (+24h) as indicated. Levels
of caspase-1 RNA from dark control mice were set as 1. A: Average
of 2 independent experiments (RNAs were isolated separately from
one eye of two different mice). Each RNA of each experiment was
amplified in triplicates. Bars: standard deviations of the six PCR
amplifications per timepoint. RNA levels of unexposed mice (dark,
D, black bar) were set as 1. B: Example amplification of caspase-1
RNA. C: Control amplification of β-actin RNA.
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shown). However, mRNA of caspase-1was induced more than
9-fold at eight hours after a two hour exposure to 13,000 lux
(Figure 3F, white bars). Exposure to 60 lux light did not in-
duce caspase-1 expression (grey bars) and RNA levels of dark-
maintained animals remained unchanged throughout the ex-
periment (not shown).

The generality of the induction of caspase-1 expression
by damaging light was verified in additional independent ex-
periments using a different mouse strain (BALB/c) and shorter
illumination periods (1 h illumination at 13,000 lux instead of
2 h). Although to a lesser extent than in 129SV/Bl6 mice,
mRNA levels of caspase-1 were again strongly induced at 6 h
after illumination (Figure 4A,B). After the peak of activation,
mRNA levels declined steadily and reached almost dark lev-
els at 12 to 14 h after illumination. At 24 h after illumination,
however, caspase-1mRNA levels increased again. This effect
was observed also in the experiment shown in Figure 3. In
contrast to caspase-1, levels of β-actin mRNA were compa-
rable in all RNA samples (Figure 4C) demonstrating that the
induction of caspase-1 was not due to differences in quantity
or quality of the RNA preparations.

Lack of c-Fos does not generally alter expression of pro-
and anti-apoptotic genes:  Since c-Fos is part of the transcrip-
tion factor AP-1, lack of c-Fos could severely alter expression
of pro- and anti-apoptotic genes. This could lead to the ob-
served protection against damaging light. However, with the
exception of c-fos (Figure 5A), all genes tested, including
caspase-1, were similarly expressed in the retina of dark
adapted wildtype and of dark adapted c-fos-/- mice (Figure 5B-
H). Immediately after the illumination to 13,000 lux for 2 h,
levels of c-fos and c-jun mRNAs were induced in wildtype
animals 4- and 2-fold, respectively (Figure 5A,B). At this
timepoint, c-jun mRNA was similarly induced (about 2-fold)
also in c-fos-/- mice. At 8 h after light exposure, retinal mRNA
levels in wildtype mice were elevated 2-fold for c-fos, 4-fold
for c-jun and 8-fold for caspase-1; in accordance with the re-
sults of the experiments shown in Figure 2. In c-fos-/- mice,
however, none of the RNAs tested were elevated above con-
trol levels at this timepoint.

DISCUSSION
Light doses above threshold induce photoreceptor apoptosis
in the vertebrate retina. Here we show that exposure to dam-
aging light but not to physiological light levels induces mRNAs
of the proto-oncogenes, c-fos and c-jun, and of the cysteine
protease caspase-1. Other apoptosis-related genes tested (Bcl-

2, Bcl-X
L
, Bad, Bax, caspase-3) were neither up- nor

downregulated by light exposure. Furthermore, all genes tested
(except for c-fos) were similarly expressed in dark-adapted
wildtype and dark-adapted c-fos-/- mice excluding the possi-
bility that the lack of c-Fos in the knockout mice generally
prevents the transcription of apoptosis relevant genes.
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Figure 5. Gene expression in wildtype and c-fos-/- mice.  Relative levels of indicated RNAs (A through H) in retinas of 129SV/Bl6 wildtype
(lanes 1 through 3) and 129SV/Bl6 c-fos-/- mice (lanes 4 through 6) as determined by exponential RT-PCR. Panels on the left: example
amplifications with the respective primer pairs. Lanes 1 and 4: unexposed controls. Lanes 2 and 5: Exposed to 13,000 lux (13 klux) for 120
min. Lanes 3 and 6: Exposed to 13 klux for 120 min with a subsequent recovery period of 8 h in darkness. Panels on the right: Relative levels
of the respective RNAs. Black bars: unexposed controls. Grey bars: relative RNA levels after exposure to 13 klux for 120 min. White bars:
relative RNA levels after exposure to 13 klux for 120 min and a subsequent recovery period of 8 h in darkness. RNA levels of unexposed
129SV/Bl6 wildtype mice (shown in lane 1) were set as 1. Amplifications were done once (C, F), twice (A, B, D, E, G) or four times (H). The
ranges of the two individual amplification values (A, B, D, E, G) are shown whenever the range exceeded a value of 0.2. Standard deviations
(H; bars) are indicated. RNAs were isolated from one retina per timepoint and condition. Second independent experiments with other groups
of mice are shown in Figure 2 and Figure 3.
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Expression of c-fos and c-jun: Activation of c-Fos con-
taining AP-1 is a prerequisite for the induction of the apoptotic
program by excessive light [5,8,10]. Induction of the DNA
binding activity of AP-1 only occurs in response to damaging
light but not after exposure to physiological levels of light [5].
In contrast, c-fos gene expression is also induced by exposure
to low levels of light. However, elevated c-fos mRNA levels
persist only after exposure to damaging light. When the light
pulse was of low intensity, c-fos RNA levels declined rapidly
after the initial peak. Similar observations have been made
during the exploitation of the diurnal expression of c-fos: when
animals received a light pulse during the dark period, c-fos
mRNA levels increased transiently for a period of 30 to 60
min [34].

Retinal c-fos mRNA expression increased even without
illumination in our system (Figure 2A). Such a moderate in-
crease in the c-fos mRNA levels could best be explained by
stress induced gene expression as has also been observed in
animals that were faced, for example, with novelty [35]. Our
data of c-fos mRNA levels after handling of the animals, pupil
dilation, and exposure to red light, support this hypothesis. In
contrast to c-fos, c-jun mRNA varied slightly or not at all fol-
lowing low levels of illumination with white light. When ex-
posed to damaging doses of light, however, c-jun mRNA lev-
els were induced 3 to 5-fold and persisted at elevated levels
for at least 20 h (Figure 2B). Induction of c-fos and c-jun gene
expression preceded the light-induced increase of AP-1 DNA
binding activity which peaks 6 h after the end of light expo-
sure [5]. This suggests that newly made c-Fos and c-Jun pro-
teins contribute to the increase of AP-1 activity. In c-fos-/-mice,
c-jun was slightly activated upon exposure to high levels of
light (Figure 5B). However, activation did not persist as long
as in wildtype animals suggesting that c-Fos containing AP-1
complexes might be involved in the transcriptional regulation
of c-jun after light insult. This is supported by the finding that
DNA binding of AP-1 is induced as early as 15 min after the
onset of light exposure [5] but elevated c-jun mRNA levels
could not be detected before 30 min of light exposure (Figure
2D).

Expression of pro- and anti-apoptotic genes:  Apoptosis
frequently involves modulation of the transcription of genes
encoding proteins involved in the response to apoptotic stimuli.
Expression of anti-apoptotic genes like bcl-2 and bcl-X

L
, for

example, have been found to be downregulated after induc-
tion of apoptosis by several stimuli in various cell systems
[36-41]. This is in contrast to expression of apoptosis promot-
ing genes like bax [42-44], bad [45], and the cysteine pro-
teases (caspases), which may be upregulated following a pro-
apoptotic insult [46-48]. Overexpression of bcl-2 has protec-
tive effects on retinal apoptosis induced by a variety of stimuli
[17,18,20-23,49]. A major function of Bcl-2 is the regulation
of cytochrome c release from mitochondria [50-52] which may
induce the apoptotic execution cascade by activating caspase-
3 [53,54] a central executioner in many apoptotic systems.

In light-induced photoreceptor degeneration, however, we
were unable to detect an alteration in the expression of bcl-2
or caspase-3 (Figure 3 and Figure 5). Similarly, an induction

of the enzymatic activity of caspase-3 or the cytoplasmic ap-
pearance of cytochrome c could not be detected after light
exposure (unpublished results). Therefore, regulation of
apoptosis by bcl-2 and/or caspase-3 might play a minor role
in light-induced retinal degeneration. The lack of regulation
of bcl-X

L
, another protein thought to be involved in the con-

trol of the mitochondrial membrane integrity, and therefore of
cytochrome c release [55] supports this hypothesis.

The role of Caspase-1:  In the system of light-induced
apoptosis of photoreceptors, caspase-1 was the only gene that
was differentially regulated by light exposure. The gene was
strongly induced at 6 to 8 h after the end of illumination in
two different mouse strains. At present, we do not know why
activation of caspase-1 was less strong in BALB/c mice than
in 129SV/Bl6 mice. It might be possible, though, that the dif-
ference in gene activation reflects strain differences in the regu-
lation of the apoptotic response to damaging light. Caspase-1
(ICE) is an enzyme that might be involved in neuronal cell
death. Dorsal root ganglion neurons undergo apoptosis upon
withdrawal of nerve growth factor. However, they are pro-
tected by the cytokine response modifier crmA, a serpin that
specifically inhibits Caspase-1 [56]. Moreover, mice deficient
for Caspase-1 [57,58] and mice expressing a dominant nega-
tive mutant of this protease [59] are more resistant to ischemic
insult than control animals [60-62]. The main substrate of
Caspase-1 is pro-interleukin-1 beta (IL-1β). Cleavage of pro-
IL-1β results in the release of the active and pro-inflamma-
tory form of IL-1β [63,64] which has been suggested to have
pro-apoptotic effects [65]. A recent report suggests that
Caspase-1 can also cleave the inhibitor of caspase-activated
deoxyribonuclease (ICAD) leading to the activation of the
endonuclease and to the fragmentation of genomic DNA [66].
In the vertebrate retina (rat), caspase-1 expression has been
predominantly found in the outer nuclear layer (ONL) [67].
Injection of a specific inhibitor of Caspase-1 decreased the
number of apoptotic cells in the ONL in an ischemia-
reperfusion model [67]. Increased Caspase-1 activity was also
detected during retinal degeneration in RCS rats and inhibi-
tors of Caspase-1 delayed this degenerative process at least
partially [29]. Interestingly, light seems to accelerate retinal
degeneration in RCS rats [68]. Furthermore, light exposure
induced oxidative stress in cultured retinal cells and decreased
the anti-apoptotic activity of the transcription factor nuclear
factor-kappaB (NF-kappaB) in a Caspase-1 dependent man-
ner [69]. The strong induction of caspase-1 in our model of
light-induced retinal degeneration suggests that Caspase-1
might be involved in mediation of apoptotic cell death of pho-
toreceptors after light insult. It is of importance that Caspase-
1 was induced only in wildtype mice that were exposed to
damaging levels of light but not in mice exposed to physi-
ological light levels or in mutant mice protected against light-
induced apoptosis (c-fos-/-). This shows that the induction was
not due to the experimental procedure (handling, stress, etc.),
and suggests that Caspase-1 might act downstream of c-Fos/
AP-1 in the cascade of light-induced photoreceptor apoptosis.

In future experiments, we will test the specific roles of
Caspase-1 and of IL-1β in our model of light-induced retinal
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degeneration and we will test the hypothesis that Caspase-1
plays a central role in the degenerative process of inherited
retinal degenerations that are enhanced by light.
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